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ABSTRACT
Following prolonged swimming, Caenorhabditis elegans cycle between active swimming bouts and
inactive quiescent bouts. Swimming is exercise for C. elegans and here we suggest that inactive bouts
are a recovery state akin to fatigue. It is known that cGMP-dependent kinase (PKG) activity plays a con-
served role in sleep, rest, and arousal. Using C. elegans EGL-4 PKG, we first validate a novel learning-
based computer vision approach to automatically analyze C. elegans locomotory behavior and an edge
detection program that is able to distinguish between activity and inactivity during swimming for long
periods of time. We find that C. elegans EGL-4 PKG function impacts timing of exercise-induced quies-
cent (EIQ) bout onset, fractional quiescence, bout number, and bout duration, suggesting that previ-
ously described pathways are engaged during EIQ bouts. However, EIQ bouts are likely not sleep as
animals are feeding during the majority of EIQ bouts. We find that genetic perturbation of neurons
required for other C. elegans sleep states also does not alter EIQ dynamics. Additionally, we find that
EIQ onset is sensitive to age and DAF-16 FOXO function. In summary, we have validated behavioral
analysis software that enables a quantitative and detailed assessment of swimming behavior, including
EIQ. We found novel EIQ defects in aged animals and animals with mutations in a gene involved in
stress tolerance. We anticipate that further use of this software will facilitate the analysis of genes and
pathways critical for fatigue and other C. elegans behaviors.
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Introduction

Fatigue is a commonly experienced phenomenon that is typ-
ically defined by a feeling of exhaustion combined with
decreased muscle output (Wan, Qin, Wang, Sun, & Liu,
2017). Feelings of fatigue are common after vigorous phys-
ical activity or exercise, but fatigue is also a hallmark symp-
tom of a variety of health disorders and diseases, including
cancer, mood disorders, neurodegenerative disorders, and
chronic fatigue syndrome. Fatigue is not limited to verte-
brates; exercise eventually drives decreased spontaneous
locomotion in invertebrates as well. The molecular pathways
and mechanisms involved in fatigue have not been fully
delineated in any animal species.

The nematode Caenorhabditis elegans provides a poten-
tially powerful model system to interrogate genetic mecha-
nisms and cellular pathways underlying fatigue. Several
methods have been developed to test the neuromuscular
output of C. elegans during locomotion, including burrowing
assays through media of varying densities (Beron et al.,
2015) and pillar deflection strength measuring assays
(Rahman et al., 2018). Caenorhabditis elegans are typically

grown on solid media, but swimming exercise in liquid
media has been shown to be energetically costly (Laranjeiro,
Harinath, Burke, Braeckman, & Driscoll, 2017). Following
prolonged swimming, C. elegans begin to spontaneously
cycle between periods of active swimming with vigorous
body undulations (active bouts) and periods of immobility
that lack body undulations (quiescent bouts) (Ghosh &
Emmons, 2008). Because swimming is exercise for C. ele-
gans, these quiescent bouts may be fatigue, as they occur
after the exertion of swimming and represent a decline in
muscle output. The initial vigorous swimming activity could
also be a result of introduction to a new environment; how-
ever, previous studies show that C. elegans have a reduction
in recovery crawl distance with longer swimming duration,
indicating that the animals are likely fatigued (Laranjeiro
et al., 2017). Definition and dissection of exercise-induced
quiescence (EIQ) pave the way to study conserved mecha-
nisms fundamental to fatigue in all animals.

However, using C. elegans to study EIQ and fatigue
requires analysis of swimming behavior over long periods of
time, and therefore presents logistical and computational
challenges. Several methods have been specifically developed
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for automatically estimating the pose of small laboratory ani-
mals, including C. elegans (Gomez-Marin, Partoune,
Stephens, & Louis, 2012; Jung, Aleman-Meza, Riepe, &
Zhong, 2014; Patel et al., 2014; Restif et al., 2014). For the
most part, methods developed for automatically estimating
the pose of small laboratory animals rely on simple image
processing (e.g. background subtraction) to extract the sil-
houette of a body before computing a medial axis transform.
A major drawback of such methods, with non-parameterized
poses, is their inability to discriminate between the front
and rear ends of the body, forcing researchers to rely on
simple heuristics instead (Jung et al., 2014; Restif et al.,
2014) (e.g. by computing the direction of movement and
assuming that the animal moves forward). Moreover, the
performance of these methods relied heavily on certain
hyperparameter choices. For example, methods which per-
form background subtraction are dictated by factors includ-
ing the granularity of temporal sampling and thresholds for
change detection. Though these are in principle automated
methods, some choices for method hyperparameters can
yield erroneous pose estimates, making the end user’s work-
flow tedious. Additionally, in the context of biological
research, these failures need to be detected—either automat-
ically (Restif et al., 2014) or manually (Jung et al., 2014;
Stephens, Johnson-Kerner, Bialek, & Ryu, 2008) to exclude
the corresponding frames from further behavioral analysis.
These human-in-the-loop systems suffer from two draw-
backs: (i) the effective throughput of the system is condi-
tioned on the required frequency of human intervention,
and (ii) opportunistic pose tracking may lead to biases in
behavioral analyses if those system failures co-occur more
frequently with certain behaviors (e.g. for those behaviors
that yield significant self-contact and/or self-occlusion such
as omega turns and coiling). Other high-throughput com-
puter vision systems have attempted to screen the body pos-
tures of up to 120 individual animals at a time (Swierczek,
Giles, Rankin, & Kerr, 2011). However, with an increasing
number of animals, the pixel resolution on each of these
individuals decreases, which can yield either coarse or unre-
liable pose metrics.

In this study, we extended previous computer-vision
work (Yang & Ramanan, 2013) with a learning-based
approach [see Methods and Guo, Govindarajan, Kimia, and
Serre (2018) for details] which outperforms competing solu-
tions including a representative deep neural network that
exhibits state-of-the-art accuracy for human tracking. Unlike
humans, C. elegans lack distinctive body parts, presenting a
significant challenge for deep neural networks and related
approaches that rely heavily on appearance alone. Moreover,
the employment of machine learning alleviates the need for
manual parameter tuning, and instead yields a model that
best describes an animal’s posture directly from the data.
This system can efficiently distinguish between periods of
activity and inactivity in freely swimming C. elegans (Guo
et al., 2018)—addressing the need for high-resolution ana-
lysis that can handle both extended periods of swimming
and quiescent behaviors in C. elegans. Unlike automated
tracking systems that limit body ‘pose’ to just a center of

mass, our system permits fine-grained analysis of body
movements and assessment of locomotion changes in C. ele-
gans swimming over time and additionally handles complex
postures more accurately. Here, we refer to this computer
vision system as poseEIQ.

Using poseEIQ, we examined C. elegans locomotory
behaviors and EIQ after prolonged swimming. To more effi-
ciently determine only whether animals are active or
inactive, we also developed a new behavioural analysis sys-
tem called edgeEIQ, which we validated using mutant strains
known to have altered EIQ (Ghosh & Emmons, 2008). With
this, we describe how EIQ changes over time with extended
free swimming and report previously undescribed changes
in EIQ as animals age. We also determined that most EIQ
bouts are not a sleep state. These new computer-vision ana-
lysis systems should be valuable for C. elegans researchers in
any field that requires accurate assessment of locomotory
behavior over extended time intervals.

Methods

Strains and maintenance

Wild type N2 Bristol, MT1072 egl-4(n477), DA521 egl-
4(ad450), HBR227 aptf-1(gk794), HBR232 aptf-1(tm3287),
IB16 ceh-17(np1), GR1307 daf-16(mgDf50), and CF1038 daf-
16(mu86) strains were used. C. elegans were grown on NGM
agar plates with E. coli OP50 bacterial food at 20 "C
(Brenner, 1974). Animals were obtained by selecting L4 lar-
val stage animals; after 24 h, animals were used in assays as
day 1 adult animals. For aging assays, 5-fluoro-20-deoxyuri-
dine (FUDR) was not used to suppress progeny production.
Animals were gently serially passaged using bacteria on a
pick to avoid overcrowding of plates with progeny.

Microfluidic chip preparation

PDMS microfluidic chips with 24 wells (1.6mm wide,
0.07mm deep, 0.4mm gap between wells) organized in four
rows and six columns were created using a custom mold. A
Sylgard 184 silicone elastomer kit (Dow Chemical) was used
to make PDMS, which was poured onto the mold to a thick-
ness of 4mm. Freshly poured PDMS was degassed in a des-
iccator using a vacuum until air bubbles had dissipated, then
placed in a 55 "C oven for 18 h to cure. PDMS was removed
from the mold and cut into chips using a razor. To decrease
hydrophobicity before use in swimming assays, these chips
were then soaked in E. coli OP50 culture overnight, washed
with water and ethanol, then left to dry for a week.

Kanamycin-treated E. coli OP50 preparation

Kanamycin-treated E. coli OP50 food solution was prepared
as previously described (Huang, Singh, & Hart, 2017). In
brief, E. coli OP50 was streaked onto LB agar plates and cul-
tured overnight at 37 "C. A single colony was used to inocu-
late 100ml of liquid LB and cultured at 30 "C shaking at
220 rpm for approximately 12 h. The culture was grown until
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it reached an optical density of 2–2.5 at 550 nm and concen-
trated to a final OD550 of 10 (OD determinations made
using diluted cultures to stay within the linear range of the
spectrophotometer). 0.2mg/mL Kanamycin was added and
the culture was placed at 4 "C for 1 week to yield a static
bacterial culture. Kanamycin-treated OP50 was discarded
after 6weeks of antibiotic treatment. Immediately prior to
assays, 200 microliters of kanamycin-treated OP50 was pel-
leted and resuspended in 300 microliters of liquid NGM.

Swimming behavioral assays

Chips were cleaned of dust and debris using laboratory tape.
Microfluidic chips were then placed into 35# 10mm Petri
dishes. Each well was loaded with kanamycin-treated OP50
in liquid NGM until a dome of the liquid droplet was vis-
ible, but no dark shadows were visible (approximately 0.5
microliters). Water was added to the Petri dish until just
level with the chip surface and paraffin oil was layered over
droplets and surrounding water to prevent evaporation. To
conserve oil, water was used underneath paraffin oil. Before
loading in individual wells, animals were picked to an
unseeded plate to avoid contaminating wells with additional
food. In assays with multiple genotypes, loading order
always changed between trials. Animals were recorded swim-
ming at 30 frames per second for 6 hours with a
Grasshopper3 4.1MP Mono USB3 Vision camera (GS3-U3-
41C6M) mounted on a Zeiss Discovery V20 microscope
with a 1.25# objective providing 14.8# magnification. For
image capture, we used FlyCap2 version 2.12.3.2 or
SpinView version 1.13.0.33. Image resolution was
2048# 1600 pixels, 270# 270 pixels per chamber with
approximately 1,800 pixels per animal. Representative video
available at DOI: 10.5281/zenodo.3604455.

For pumping analysis, videos were recorded using the
same setup but at 72.0# magnification to allow for visualiza-
tion of the pharynx. For quiescent bout analysis, these vid-
eos were scaled to match the resolution of all other videos
to ensure that quiescent bouts were called in a similar man-
ner. After identification of quiescent bouts, the original vid-
eos were manually analyzed for pumping status. If the
pharynx was for any reason not visible during a bout (self-
occlusion or debris), those bouts were not counted
(five instances).

Beat rate was manually collected by analyzing the first
minute of swimming. One beat was defined as a full-body
bend by the animal in both directions. The experimenter
was blinded during this analysis.

Automated well detection

As a pre-processing stage, wells were automatically seg-
mented using MATLAB’s connected component algorithm
(function bwboundaries) on the output of an edge detector
(Kimia, Li, Guo, & Tamrakar, 2019). The top 24 connected
components were then selected—each corresponding to a
different well.

edgeEIQ and activity level analysis

The behavior of each animal was analyzed for each well
independently. We implemented a simple ‘active’ vs.
‘quiescent’ classifier by considering the binary output of an
edge detector (Kimia et al., 2019) and computing the edge
difference between consecutive frames using the Jaccard
index defined as: IoU¼Area of Overlap/Area of Union,
where Area of Overlap is the number of edge pixels present
in two consecutive frames and Area of Union is the sum of
the total number of edge pixels across consecutive frames. If
the IoU was above a threshold h¼ 0.9, the behavior was set
to quiescent. Otherwise, the behavior was set to active.
Using edges rather than pixels yielded robustness to noise
compared to simpler systems based on pixels (Restif et al.,
2014). A final class label was computed by voting between
the two behaviors over a 1 s (30 frames) time window. The
activity threshold h was treated as a hyperparameter and a
grid search strategy was employed to identify the optimal
value. By systematically varying h from 0.1 to 1 (with a step
size of 0.05) and computing the Jaccard index between the
estimations and manually annotated labels, we were able to
automatically determine optimal h! that yielded the highest
agreement. The annotated dataset comprised active/quiescent
labels from video recordings of 8 held out animals, each
video lasting 20min at 30 frames per second. The optimal
threshold value h! was identified to be 0.9, and yielded an
agreement of 92%.

Analysis of binary quiescence data

For each hour, binary quiescence data for each animal were
analyzed using MATLAB to determine fractional quiescence,
time to first bout, bout number, and bout duration. First,
data for each animal was iterated through to determine the
start and end times for every quiescent bout across the 6-h
assay. Arbitrarily, we defined the minimum duration of a
quiescent bout as three seconds. Fractional quiescence for
each hour was determined by summing the duration of qui-
escent bouts observed that hour and dividing this by time in
that hour. To determine bout number per hour, the number
of bouts observed in an hour was tallied. For this metric, if
a bout crossed over multiple hours, this bout was counted as
a fractional bout. Bout duration was determined by dividing
the total time spent in quiescent bouts by the number of
bouts that occurred in that hour. For bout duration, if a
bout crossed over multiple hours it was counted in each
hour for its full duration to more accurately portray the
demographics of quiescent bouts observed during each hour.
This rarely resulted in bouts being counted more than once
in bout duration calculations. For fractional quiescence, if a
bout crossed over multiple hours, only the portion of the
bout occurring in the given hour contributed to the frac-
tional quiescence for that hour. The time to first bout was
calculated by determining the second in which the first qui-
escent bout for an animal occurred.
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poseEIQ and kinematic analysis

The approach is based on a pose tracking algorithm devel-
oped in-house (Guo et al., 2018). Briefly, nine body points
were chosen along the medial axis of the animal body from
head to tail. We collected 10 representative video sequences
(each corresponding to a different animal) with a total
length of 1200 frames (30 frames per second). Ground-truth
poses were manually annotated every 10 frames by marking
the location of the nine body points. To train and test our
computer vision system, we used a leave-one-video out pro-
cedure. Detailed evaluation can be found in (Guo et al.,
2018). On average, 83% of the points were correctly detected
(i.e. within a 5px radius around the ground-truth landmark).
This strategy outperformed competing systems for human
pose estimation, specifically the original deformable part
model (Yang & Ramanan, 2013) and a leading neural net-
work architecture for human pose estimation, the convolu-
tional pose machine (Wei, Ramakrishna, Kanade, & Sheikh,
2016). These positional points were then used to compute
metrics informative of body movements, as defined by Restif
et al. (2014). Since these measures rely heavily on canonical
reorientation of the worm with respect to its head, differen-
tiating the head from the tail becomes particularly import-
ant. To alleviate this concern, we specifically ran a second
round of tracking, using the Hungarian algorithm (Kuhn,
1955), with the initial head assignment manually checked by
a trained expert. Representative video of tracking available at
DOI: 10.5281/zenodo.3606717.

Statistical analysis

Statistical analysis was performed using GraphPad Prism 7.0
software (La Jolla, CA). Statistical significance in fractional
quiescence, bout number, and bout duration was determined
using a two-way ANOVA and Dunnett’s multiple compari-
sons testing. Statistical significance for time to first quiescent
bout was determined using Kruskal–Wallis and Dunn’s mul-
tiple-comparison tests. A value of p< 0.05 was used to
determine statistical significance (!p< 0.05, !!p< 0.01,
!!!p< 0.001). Error bars in figures represent the standard
error of the mean.

Results

Behavioral analysis of swimming C. elegans

Analysis of C. elegans movements during swimming is crit-
ical for the analysis of diverse circuits and behavior. To fur-
ther characterize C. elegans locomotion in liquid media, we
took advantage of a new computer-vision system for analysis
of swimming animals briefly described by Guo et al. (2018),
referred to here as poseEIQ (Figure 1(A)), and assessed
changes in C. elegans locomotory behaviors during pro-
longed swimming. This method addresses several problems
common in current image analysis methods. With respect to
background subtraction methods, the temporal granularity
of sampling can lead to scenarios where the animal is con-
strued as part of the background if it is not moving. Image

analysis tracking algorithms are also sensitive to other
hyperparameter choices that can vary drastically across
imaging sessions because of changes in illumination, back-
ground contrast, and imaging resolution. The poseEIQ
method is a supervised machine learning algorithm, which
learns appropriate configurations of body pose model
parameters by optimizing an objective function that factors
in both the local visual appearance of body parts and their
global geometry. This alleviates the need for explicit back-
ground selection and the hand selection of hyperparameters.
poseEIQ is more robust by design as long as representative
image samples are included in the training phase of
this model.

For this analysis, individual young adult animals were
placed in small liquid drops with static bacteria as food and
high-frame rate, high-resolution videos were obtained over a
6-h period. We examined both control animals and egl-4
mutant animals, which are known to have altered locomo-
tion. The cGMP-dependent protein kinase encoded by the
egl-4 gene is critical for a wide range of behaviors, including
arousal, locomotion, and sleep (Raizen et al., 2008). egl-
4(n477) loss of function animals and egl-4(ad450) gain of
function animals were expected to show opposing differen-
ces in locomotory behaviors, as increased EGL-4 function
promotes quiescent behaviour in swimming animals (Ghosh
& Emmons, 2008; McCloskey, Fouad, Churgin, & Fang-
Yen, 2017).

Accurate assessment of locomotory behaviors
during swimming

To determine if poseEIQ detected changes in locomotion,
we analyzed recordings of 12 wild type animals and 12 ani-
mals for each of the egl-4 mutant alleles. We used poseEIQ
for two time intervals within the 6-h recording window: the
first 30min of swimming (early), when quiescent bouts are
unlikely to occur were compared to 30min of swimming
(late) about 4 h (228.25 ± 4.28min) into the videos.

Figure 1. Visual representations of poseEIQ (A) and edgeEIQ (B). (A) poseEIQ
uses a shape-consistent flexible mixture of parts model to track C. elegans loco-
motion. Image adapted from Guo et al. (2018). (B) edgeEIQ compares edge
overlap between consecutive frames to determine activity level.
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Behavioral outputs are for both active and quiescent animals,
but outputs can easily be changed to analysis of only active
or quiescent bouts. For ease of comparison to previous
work, we used locomotion parameters that were previously
defined in Restif et al. (2014) (Supplementary Table 1). To
undertake analysis for these locomotion parameters, it was
necessary to assign the head and tail of each animal. Initial
head and tail assignments were made computationally and
verified manually. As the poseEIQ system performs shape-
based pose tracking, these associations were maintained over
the course of the video in most scenarios, alleviating the
need for further human intervention. The resulting descrip-
tion of locomotion parameters is shown in Figure 2 (statis-
tics in Table 1). Swimming beat rate was manually counted
to validate poseEIQ derived wave initiation rate, a similar
metric. One beat was defined as a full body movement in
both directions. This yielded comparable values
(Supplementary Figure 1), and values obtained running the
swimming tracking program CeleST on our videos were also
comparable (Restif et al., 2014) (Supplementary Table 2).

As expected, the locomotory behavior of egl-4 animals
differed from wild-type animals; loss and gain of function
animals are expected to have a diametrically opposed impact
on behaviors. For example, at both early and late time
points, average wave initiation rate and activity index were
decreased in egl-4(ad450gf) animals and increased in egl-
4(n477lf) animals, compared to wild-type animals (Figure
2(A,B), Table 1). We also found increased curling activity in
egl-4(ad450gf) animals and decreased curling activity in egl-
4(n477lf) animals compared to wild type at both early and
late time points (Figure 2(C); Table 1). At the early time
point, differences in stretch were observed, as curvature
range was found to be increased in egl-4(ad450gf) animals
and decreased in egl-4(n477lf) animals when compared to
wild type (Figure 2(D); Table 1). Differences from wild type
were also observed in attenuation during the early time
point, with increased body wave attenuation in egl-
4(ad450gf) animals and decreased body wave attenuation in
egl-4(n477lf) animals (Figure 2(E); Table 1). At the later
time point, egl-4(n477lf) animals showed increased brush
stroke and egl-4(ad450gf) animals showed decreased brush
stroke compared to wild type (Figure 2(F); Table 1). We
also observed a significant increase in body wave number of
egl-4(ad450gf) animals compared to wild type (Figure 2(G);
Table 1). egl-4(n477lf) animals at the late time point showed
increased curvature range and body wave attenuation com-
pared to wild type (Figure 2(D,E); Table 1). The large num-
ber of diametrically opposed differences observed in egl-4
animals suggests that poseEIQ can accurately discriminate
between normal and mutant locomotion.

Prolonged swimming changes locomotory behaviors

We compared locomotion parameters across time, compar-
ing early versus late time points after prolonged swimming
within genotypes. Wave initiation rate and activity index
decreased in wild type, egl-4(n477lf), and egl-4(ad450gf) ani-
mals over time (Figure 2(A, B); Table 1). Body wave number

increased and brush stroke decreased in wild type and egl-
4(ad450gf) animals between early and late time points
(Figure 2(F,G); Table 1). Finally, curling activity and stretch
increased in wild type animals over time (Figure 2(C,D);
Table 1). The differences observed in each genotype show
that not only can this approach measure the effects of pro-
longed exercise on locomotion using poseEIQ and these
parameters, but also that changes in locomotion after pro-
longed swimming differ based on genotype. Overall, the
changes observed at the late time point are consistent with
less vigorous locomotion after 4 h of swimming.

Swimming behavioral states can be represented and
analyzed using binary data or unsupervised hidden
Markov models (HMM)

One drawback of detecting locomotion changes using
poseEIQ is that the analysis is computationally intensive and
takes a substantial amount of time to run (approximately
10 s/frame for pose estimation). Therefore, we focused on
quiescent behavior during prolonged swimming and devel-
oped an edge-detection program, edgeEIQ (Figure 1(B)),
that more efficiently identifies EIQ bouts in swimming ani-
mals. Knowing that diminished EGL-4 activity decreases
quiescent behavior after prolonged swimming (Ghosh &
Emmons, 2008), we used edgeEIQ to detect quiescent bouts
on the video used above. Ethograms constructed after ana-
lysis of wild type and egl-4 mutant animals showed clear dif-
ferences in EIQ bouts for each genotype. The downside of
this approach was that the activity threshold was a manually
selected parameter (manual optimization of the threshold
for behavior to be determined quiescent and EIQ set at a
minimum duration of 3 s). As an alternative, we explored
using an unsupervised Hidden Markov Model (HMM) to
extract latent underlying state temporal sequences of activity.
This circumvented the need for an explicit selection of EIQ
minimum duration or other model parameters. Modeling
was done using the open-source package hmmlearn in
Python. The two-state HMM yielded a latent state sequence
that was qualitatively similar to the ethogram constructed
from the manually thresholded edgeEIQ binary data (Figure
3(A)). In a three-state HMM, the state that seems to corres-
pond best to the inactive state from the manually thresh-
olded binary ethogram seems to be atomic in nature, and
thus cannot be further decomposed. The state corresponding
best to the active state from the manually thresholded binary
ethogram decomposed into two states (Supplementary
Figure 2(A)). We found that HMMs with more than three
states resulted in degenerate latent states, i.e. states for which
more than one observation is very rare. We can identify
such states from analyzing the transition matrices
(Supplementary Figure 2(B,C)) and locating states for which
all outgoing transition probabilities are close to zero.

To explore transitions between states predicted by HMM
modeling, we computed the log-transformed transition
count matrices (Supplementary Figure 2(B,C)). Prior to this,
the per-frame latent state sequences were clumped into
bouts of length 30 s. The equivalent latent state of the bout
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Figure 2. Locomotion analysis of egl-4 mutant animals during prolonged swimming. Evaluation of parameters (A) Wave Initiation Rate, (B) Activity Index, (C) Curling, (D)
Stretch, (E) Attenuation, (F) Brush Stroke, (G) Body Wave Number, (H) Asymmetry; each indicative of different aspects of locomotion over two windows of 30min each. For a
detailed explanation of these parameters, please refer to Restif et al. (2014). The ‘early’ time point is at the very beginning of the 6-h long behavioral assay while the ‘late’
time point is approximately at the 4h mark (228.25±4.28min). The choice of these time points was motivated by the ethograms of Figure 3(A). Behavioral parameters for
12 animals from each of the three genotypes: wild type (WT), egl-4(n477lf) (egl-4(lf)), and egl-4(ad450gf) (egl-4(gf)) are shown here. The within-group mean temporal course
of each parameter is shown as insets in the respective panel, with the early time point on the top left and the late time point on the top right. The average parameter value
(over the 30min window) for each individual animal is shown in the respective panel; corresponding early/late points are connected by dashed/straight lines. Activity index
and brush stroke were normalized to body size (calculated in pixels). Statistical analysis available in Table 1.

Table 1. Statistical analysis of egl-4 mutant animal locomotion parameters during prolonged swimming.

Early Late Early vs. late

WT vs. e.g.,l-4(lf) WT vs. e.g.,l-4(gf) WT vs. e.g.,l-4(lf) WT vs. e.g.,l-4(gf) WT egl-4(lf) egl-4(gf)

A. Wave initiation rate ! !!! !! !! !!! !! !!!
B. Activity index n.s. !! ! !! !! !! !!!
C. Curling !!! !!! !! !!! !! n.s. n.s.
D. Stretch ! !! !! n.s. ! n.s. n.s.
E. Attenuation !! ! ! n.s. n.s. n.s. n.s.
F. Brush stroke n.s. n.s. ! ! !!! n.s. !!!
G. Body wave number n.s. n.s. n.s. !! !!! n.s. !!!
H. Asymmetry n.s. n.s. n.s. n.s. n.s. n.s. n.s.

The non-parametric Kruskal–Wallis test (with Bonferroni correction for multiple comparisons) was used for testing significance of inter-group differences within
and across time points, as well as within-group differences across time points. Error bars indicate ± SEM. !p< 0.05; !!p< 0.01; !!!p< 0.001. WT¼wild type;
egl-4(lf) ¼ egl-4(n477lf); egl-4(gf) ¼ egl-4(ad450gf).

458 K. N. SCHUCH ET AL.



was assigned as the statistical mode of the latent states of
the constituent frames. The complete absence of state 2 in
egl-4(ad450) gain of function animals, coupled with the rela-
tive infrequency of transitions between states 1 and 2 in the
wild-type animals lends support to the aforementioned
atomicity of the latent states, i.e. whether or not a given
state can be decomposed further into unique latent states
(Supplementary Figure 2(B,C)). The most straightforward
conclusion from HMM modeling of locomotory behavior is
that swimming C. elegans have a single inactivity state, based
on activity. Additionally, swimming C. elegans likely have
two active states, which is consistent with previous work
(McCloskey et al., 2017).

Using our two-state HMM, we randomly sampled body
poses of animals in states that likely represent activity and
quiescence (Supplementary Figure 3(A)). Similar to previous

studies, eigen decomposition revealed three modes that
account for >95% of the total variance in body postures
(Brown, Yemini, Grundy, Jucikas, & Schafer, 2013; Stephens
et al., 2008), and the statistical mean body posture of active
and quiescent animals appears quite similar (Supplementary
Figure 3(B,C)). Although quiescent animals sometimes
assume a straight posture (Supplementary Figure 3(A)), this
similarity between active and quiescent postures contrasts
with previous observations reporting that quiescent animals
in liquid gradually assume a rod-like posture (Ghosh &
Emmons, 2008). The posture discrepancy is likely explained
by differences in the definition of quiescent bouts and sam-
pling rates. Here, short quiescent bouts are included; these
were not detected or excluded in the previous study. The
lack of a straight posture in a quiescent animal can be
observed in the representative video available at DOI:
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Figure 3. Analysis of exercise-induced quiescence in egl-4 mutant animals. 24 animals per genotype. (A) Left panel: Ethograms generated using an unsupervised
Hidden Markov Model for wild type, egl-4(n477lf), and egl-4(ad450gf) animals. Each row represents the latent states of a single animal over the course of the 6 h
experiment. Right panel: ethograms constructed from manually thresholded binary activity data. Filled (or empty) regions can be interpreted as an ‘active’ (or
‘inactive’) state, respectively. (B) On average, the egl-4(n477lf) animals showed decreased fractional quiescence (fraction of each hour spent in quiescent bouts) com-
pared to wild type animals during hours 4 through 6. egl-4(ad450gf) animals showed increased average fractional quiescence at all time points compared to wild
type animals. (C) egl-4(n477lf) animals showed decreased average number of bouts (per hour) in hours 3 through 6, compared to wild type animals. egl-4(ad450gf)
animals showed increased average number of bouts for hours 1 and 2, and decreased average number of bouts in hours 4 through 6, compared to wild type. (D)
Average duration of quiescent bouts did not differ between wild type and the egl-4(n477lf) animals. egl-4(ad450gf) animals showed increased average bout duration
during hours 3, 4, and 6. Animals from three independent biological replicates (3 different days). Two-way ANOVA and Dunnett’s multiple comparisons test. (E) egl-
4(ad450gf) animals initiated quiescent bouts earlier than wild type animals, while egl-4(n477lf) animals were not different. Kruskal–Wallis test and Dunn’s multiple
comparisons test. Error bars indicate ± SEM. !p< 0.05; !!p< 0.01; !!!p< 0.001.
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10.5281/zenodo.3606717. C. elegans display stereotypical
body postures during sleep (Iwanir et al., 2013; Schwarz,
Spies, & Bringmann, 2012; Tramm, Oppenheimer, Nagy,
Efrati, & Biron, 2014); the lack of clear difference between
active and quiescent body postures here indicates that EIQ
is likely distinct from sleep.

We also examined whether the duration of an active bout
was related to the duration of the following quiescent bout
and found that poor correlation was seen for bout durations
(Spearman’s r ¼ %0.29) (Supplementary Figure 4(A)). This
differs from the relationship between active and subsequent
quiescent bouts observed during developmentally timed
sleep, as a positive correlation was found between active and
quiescent bout durations (Iwanir et al., 2013). To explore
this further, we used the raw edge-overlap data output by
edgeEIQ (which is indicative of how much an animal is
moving from frame to frame) to determine whether the
intensity of an active bout affects the following quiescent
bout. To look at animals with differing intensities of activity
before entering a quiescent bout, we split animals into two
groups, more active and less active, by the median activity
prior to entering quiescence. We saw no difference in quies-
cent bout duration between the two groups (Supplementary
Figure 4(B)). We also found that the less active animals
returned to their initial activity level after leaving a quiescent
bout—this was also true of the more active animals
(Supplementary Figure 4(B)). We conclude that the relation-
ship between active and quiescent bouts is more complicated
than a linear relationship where increased activity leads to
increased rest.

Accurate assessment of quiescent behavior during
prolonged swimming

To confirm that our edgeEIQ program could detect previ-
ously described differences in EIQ, we compared wild-type
animals swimming in the presence of food to animals carry-
ing previously described egl-4 mutant alleles. egl-4(n477) loss
of function animals were predicted to show decreased EIQ
and egl-4(ad450) gain of function animals were expected to
show increased EIQ. 6-h videos of swimming animals were
recorded and analyzed with the program. The fraction of
time quiescent (fractional quiescence) was determined for
each hour in individual animals across the 6-h experiment
(Figure 3(B)). At every time point, egl-4(ad450) gain of func-
tion animals showed increased fractional quiescence com-
pared to wild type, while egl-4(n477) loss of function
animals showed decreased fractional quiescence for hours 4,
5, and 6, which is consistent with our prediction and previ-
ous work (Ghosh & Emmons, 2008). Next, we examined the
average number of quiescent bouts in each hour and the
average quiescence bout duration for each hour. egl-4(n477)
animals had decreased bout numbers, starting in hour three
and onward (Figure 3(C)). egl-4(ad450) gain of function ani-
mals showed increased bout numbers per hour during the
first 2 h of swimming and decreased bout numbers for hours
4 through 6 (Figure 3(C)) and had increased bout durations
at almost all time points, with the exception of hour one

(Figure 3(D)). Finally, we examined when wild type and egl-
4 mutant animals first entered a quiescent bout after pro-
longed swimming. On average, egl-4(ad450) gain of function
animals showed quiescence at an earlier time than wild type
animals (first quiescent bout of &3 s, Figure 3(E)). The loss
of egl-4 function did not alter quiescent bout onset. Overall,
these results obtained are entirely consistent with previous
work and suggest that the edgeEIQ program can robustly
identify differences in EIQ and other quiescent behaviors of
swimming animals.

EIQ does not require pathways necessary for
developmentally timed sleep or stress-induced sleep

A well-characterized quiescent state in C. elegans is sleep
(Hill, Mansfield, Lopez, Raizen, & Van Buskirk, 2014;
Raizen et al., 2008). To determine whether sleep was occur-
ring during EIQ bouts, we manually examined quiescent
bouts in wild type animals to determine if feeding was
occurring. In C. elegans, pharyngeal pumping can be used as
a metric for food intake and feeding. During each hour,
pharyngeal pumping was observed in the majority of quies-
cent bouts; very few bouts were observed where no pharyn-
geal pumping occurred (Figure 4(A)). However, during
several quiescent bouts, animals did not pump in the first
part of the quiescent bout, then resumed pumping for the
remainder of the bout. We called these ‘mixed bouts’ and
found that the percentage of mixed bouts increased as quies-
cent bout duration increased (right panel, Figure 4(A)).
However, in the majority of quiescent bouts animals were
pumping, suggesting that most C. elegans EIQ bouts are
not sleep.

Examination of mutant strains confirms that there is little
mechanistic overlap between EIQ and previously defined C.
elegans sleep states. Changes in EGL-4 kinase activity impact
all known types of C. elegans sleep (Hill et al., 2014; Raizen
et al., 2008; You, Kim, Raizen, & Avery, 2008). Perturbation
of EGL-4 also alters sensory response and changes locomo-
tion in waking animals (Figure 2). The AP2 transcription
factor APTF-1 is specifically required for locomotion quies-
cence during C. elegans developmentally timed sleep (Turek,
Lewandrowski, & Bringmann, 2013) and the paired homeo-
domain transcription factor CEH-17 is required for locomo-
tion quiescence in stress-induced sleep (Hill et al., 2014).
We tested aptf-1(gk794) and aptf-1(tm3287) loss of function
mutants for defects in EIQ and found that loss of APTF-1
does not alter fractional quiescence, bout number, bout dur-
ation, or time to first bout, when compared to wild type ani-
mals (Figure 4(B–E)). Although aptf-1(tm3287) differed
from wild type in time to first bout as well as fractional qui-
escence and bout duration at hour five, similar changes were
not observed in aptf-1(gk794) animals, decreasing confidence
that these changes can be attributed to decreased aptf-1
function (Figure 4(B,D,E)). We found that ceh-17(np1) loss
of function animals were not different than wild type ani-
mals in fractional quiescence, bout number, bout duration,
or time to first bout (Figure 4(F–I)). Combined, these results
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suggest that different molecular mechanisms underlie EIQ
versus C. elegans locomotion quiescence during sleep.

DAF-16/FOXO function delays initiation of quiescent
bout cycling after prolonged swimming

The DAF-16/FOXO transcription factor plays a critical role
in response to multiple stressors, including sleep restriction
(Driver, Lamb, Wyner, & Raizen, 2013; Henderson &
Johnson, 2001). In fasting conditions, daf-16(mu86) loss of
function animals have total quiescent activity equivalent to
wild type animals (McCloskey et al., 2017). We examined
both daf-16(mgDf50) and daf-16(mu86) loss of function
mutant animals for changes in EIQ timing. daf-16(mgDf50)
animals showed increased fractional quiescence at hours
three, four, and six (Figure 5(A)), as well as increased bout
number and bout duration at hours three and four (Figure
5(B,C)). However, these differences were not observed in

daf-16(mu86) animals. Both loss of function strains showed
decreased time to first quiescent bout (Figure 5(D)). Because
this last defect was seen in both mutant daf-16 strains, we
suggest that DAF-16 plays a role in the response to stress
caused by prolonged swimming that is important to deter-
mining EIQ onset.

Aged animals enter quiescence at an earlier time and
show increased quiescence during prolonged swimming

With age, organisms experience loss of muscle mass, known
as sarcopenia, which is believed to contribute to increased
frailty, decreased muscle strength, and fatigue in aged popu-
lations (Marty, Liu, Samuel, Or, & Lane, 2017). Age-related
muscle deterioration has previously been observed in C. ele-
gans body wall muscle (Herndon et al., 2002), and aged C.
elegans have deficits in various locomotion assays, including
swim rate (Mulcahy, Holden-Dye, & O’Connor, 2013; Restif
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Figure 4. Exercise-induced quiescent bouts are not sleep. (A) Behavior of wild type animals during quiescent bouts was classified as ‘pumping’ (exhibited pharyn-
geal pumping throughout a quiescent bout), ‘mixed’ (began a quiescent bout without pumping, and resumed pumping midway through the bout), and ‘not pump-
ing’ (no pharyngeal pumping). Left panel: The majority of quiescent bouts were classified as pumping, regardless of when they occurred. Right panel: When
classified based on bout duration, most bouts lasting 3min or less were classified as not pumping, while bouts longer than 4min were usually classified as mixed
bouts. 199 total quiescent bouts classified drawn from 5 animals. Loss of function aptf-1(gk794lf) and aptf-1(tm3287lf) animals did not differ from wild type in frac-
tional quiescence (A), bout number (B), or bout duration (C), with the exception of fractional quiescence (B) and bout duration (B) of aptf-1(tm3287lf) animals at
hour 5. Two-way ANOVA and Dunnett’s multiple comparisons test. (E) Average time to first bout was slightly sooner in aptf-1(tm3287lf), but not aptf-1(gk794lf), ani-
mals versus wild type. Kruskal-Wallis test and Dunn’s multiple comparisons test. n¼ 24 per genotype. Loss of function ceh-17(np1lf) showed no difference in frac-
tional quiescence (F), bout number (G), and bout duration (H), with the exception of increased fractional quiescence at hour 5 (F). 2-way ANOVA and Dunnett’s
multiple comparisons test. (I) No difference in time to first bout was observed between ceh-17(np1lf) animals and wild type. Kruskal-Wallis test and Dunn’s multiple
comparisons test. n¼ 24 per genotype. Error bars indicate ± SEM. !p< 0.05; !!p< 0.01; !!!p< 0.001.
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et al., 2014). To test whether aged animals show defective
EIQ, we aged wild type animals for 1, 2, 3, 4, 7, and 10 days
into adulthood. Then, we quantified differences in EIQ tim-
ing. Day 7 and 10 adult animals showed increased fractional
quiescence compared to day 1 adults, while days 2, 3, and 4
adults were generally indistinguishable from day 1 adults
(Figure 6(A)). No dramatic differences in bout duration
were seen between different aged animals. However, bout
number was increased from day 7 at hours 2, 3, and 6 and
increased in day 10 adults at hours one, two, three, five, and
six (compared to day 1; Figure 6(B,C)). On days 3, 4, 7, and
10, animals began cycling between activity and inactivity
more quickly than day 1 adults (Figure 6(D)). A similar
decrease in beat rate per minute was also observed at days 2,
3, 4, 7, and 10 (Supplementary Figure 5). These results sug-
gest that locomotory output declines in aged animals, con-
sistent with diminished muscle function in aging animals.
Additionally, we noted that different aspects of EIQ metrics
decline with age at different rates; time to first EIQ bout
decreased with age more rapidly than fractional EIQ
increased with age.

Discussion

Here, we work with the computer vision programs poseEIQ
and edgeEIQ, which reveal in finer detail changes in C. ele-
gans locomotion after prolonged periods of swimming.

Increased inactivity was observed after extended swimming,
as were differences in swimming locomotory behaviors
between wild-type and mutant animals. Loss of the EGL-4
cGMP-dependent kinase and DAF-16 FOXO function
altered EIQ after prolonged swimming. However, loss of the
proteins APTF-1 and CEH-17, which are required for devel-
opmentally timed sleep and stress-induced sleep in C. ele-
gans, respectively, did not affect EIQ. Aged animals showed
increased EIQ. Based on examining pharyngeal pumping,
animals are actively feeding during the majority of EIQ
bouts, indicating that EIQ is usually not a sleep state.
Computer-vision programs used here enabled in-depth ana-
lysis of EIQ and locomotory behaviors across time and
revealed previously undescribed defects. This work and
development of these automated analysis strategies enables
future work that will interrogate the molecular pathways
underlying behaviors associated with exercise and fatigue.

C. elegans locomotory behavior after prolonged swim-
ming has not been thoroughly studied. Previous studies
were limited by reliance on manual annotation, which hin-
ders research depth, or by reliance on constrictive microflui-
dic devices, which may induce mechanical stress (Ghosh &
Emmons, 2008; Gonzales, Zhou, Fan, & Robinson, 2019).
Using both of our new systems, we can provide a detailed
analysis of how C. elegans locomotory behaviors change after
prolonged swimming. When comparing wild type and egl-4
mutant animals, differences were found in multiple
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Figure 5. Analysis of exercise-induced quiescence in daf-16 mutant animals. (A) Loss of function daf-16(mgDf50lf) animals showed increased average fractional qui-
escence, compared to wild type at hours 3, 4, and 6. This difference was not repeated in daf-16(mu86lf) animals. (B) daf-16(mu86lf) animals showed increased aver-
age number of bouts per hour, compared to wild type in hour 4, and daf-16(mgDf50lf) animals showed an increase during hours 3 and 4. (C) daf-16(mgDf50lf)
animals showed increased average bout duration, compared to wild type during hours 3 and 4, while daf-16(mu86lf) animals showed no difference. Two-way
ANOVA and Dunnett’s multiple comparisons test. (D) The daf-16(mgDf50lf) and daf-16(mu86lf) animals both showed decreased average time to first bout, compared
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parameters, including wave initiation rate at early and late
time points. Interestingly, there were also differences in
which locomotion parameters changed over time between
wild type and mutant animals. For example, curling activity
and stretch were found to change over time in wild type
animals, but not in egl-4 mutant animals. In future studies
of C. elegans fatigue, parameters like wave initiation rate and
brush stroke will likely provide information about how vig-
orously an animal swims and can be used to track decreased
muscle output after prolonged swimming exercise. We note
that quiescence levels can vary across experiments, even in
wild type animals. This may be caused by differences in
ambient conditions during rearing (e.g. humidity levels,
vibration). Here, all experimental groups in a trial were
reared in tandem to control for these differences.

It is important to note that poseEIQ, used herein for ana-
lysis of swimming locomotory behaviour, is computationally
expensive and requires substantial time for processing. To
increase efficiency, we developed edgeEIQ which is faster,
but less comprehensive, as it only distinguishes active and
inactive states during swimming. Loss of function of the
gene egl-4 has previously been associated with decreased qui-
escence after prolonged swimming (Ghosh & Emmons,
2008, 2010). To test whether edgeEIQ could detect the
impact of egl-4 mutations on EIQ, we analyzed the behavior

of gain and loss of function mutants of egl-4. As expected,
gain and loss of function mutations in egl-4 were associated
with increased and decreased EIQ activity, respectively.
cGMP-dependent protein kinase EGL-4 is also known to
promote quiescent activity during all known forms of C. ele-
gans sleep (Hill et al., 2014; Raizen et al., 2008). We origin-
ally hypothesized that the quiescent behavior after prolonged
swimming might also be a sleep state. Usually sleeping ani-
mals will stop both feeding and locomotion. But, we found
that pharyngeal pumping was usually observed in animals
during EIQ bouts, suggesting that EIQ bouts are usually not
sleep. We also used genetic strategies to explore the relation-
ship between sleep and EIQ bouts. The RIS neuron is critical
for developmentally timed sleep, and function of the APTF-
1 transcription factor is required for RIS-mediated sleep
induction (Turek et al., 2013). Likewise, the ALA sensory
neuron is required for quiescent behavior during stress-
induced sleep (Hill et al., 2014). CEH-17 loss alters gene
expression in the ALA neuron, and loss of this protein leads
to shortened ALA axons and inability to enter a sleep state
following cellular stress (Hill et al., 2014; Pujol, Torregrossa,
Ewbank, & Brunet, 2000; Van Buskirk & Sternberg, 2010).
We tested animals lacking aptf-1 and ceh-17 function for
defects in EIQ to determine whether exercise-induced loco-
motion quiescence was mediated by pathways involved in
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mediating locomotion quiescence in developmentally timed
or stress-induced sleep. We found that these mutant animals
had normal locomotion quiescence. Therefore, EIQ and
sleep are not identical and are likely mediated by overlap-
ping, but distinct molecular and cellular pathways.

Prolonged exercise is stressful. In C. elegans, the tran-
scription factor DAF-16/FOXO localizes to the nucleus dur-
ing cellular stress, where it upregulates genes involved with
stress response, including oxidative stress response genes
(Henderson & Johnson, 2001; Murphy et al., 2003). As pro-
longed swimming by C. elegans leads to transcriptional
changes in oxidative stress response genes (Laranjeiro et al.,
2017), we reasoned that DAF-16 might play a role in EIQ
and stress response. Loss of function daf-16 mutant animals
initiated EIQ earlier than wild type animals, suggesting that
DAF-16 normally promotes expression of genes that allow
animals to endure the stress of exercise for a longer initial
swim period of time.

As they age, animals experience deterioration that can
result in fatigue, weakness, and sarcopenia. We examined
EIQ as C. elegans age and, as predicted, older animals
showed increased EIQ. Surprisingly, a dramatic decrease in
initial swim period time was seen in animals three or more
days into adulthood. This deterioration is not mirrored in
fractional EIQ, as animals only show an increase in frac-
tional EIQ at seven or more days into adulthood. Further
analysis of EIQ should provide insight into the effects of the
aging process on muscle function over time. Changes in EIQ
in aged C. elegans are likely a marker of healthspan and the
mechanisms underlying these changes may be conserved
mechanisms relevant to fatigue in aging humans.

Here, we developed systems for automatic analysis of C.
elegans swimming locomotory behavior with a long-range
goal of understanding locomotion quiescience and associated
mechanisms. The cellular and molecular pathways that com-
municate fatigue from muscles to the nervous system during
exercise remain obscure. In complex animals, afferent neur-
onal pathways are thought to carry information from the
periphery to the central nervous system, which eventually
results in a ‘feeling of exhaustion’ that results in decreased
locomotion. Energy depletion in peripheral organs could
also result in decreased locomotion. Results presented here
and other works (Beron et al., 2015; Lesanpezeshki et al.,
2019; Rahman et al., 2018) have demonstrated that inverte-
brates show aspects of fatigue, even though they lack exten-
sive afferent neuronal pathways. Further dissection of these
behaviors in invertebrates should provide insight into con-
served cellular and molecular pathways involved in fatigue,
as well as other aspects of endurance and exercise.

Conclusions

Computer-vision systems have been developed for accurate
analysis of C. elegans locomotory behavior during prolonged
swimming exercise (over 6 h). This system is complemented
by a faster edge detection-based system that can detect
pauses in locomotion. We find that most prolonged swim-
ming results in exercise-induced quiescence (EIQ) bouts that

are dependent on EGL-4/PKG function, but not on the
function of genes that are specifically required for C. elegans
sleep. The timing of EIQ bout initiation is dependent on
DAF-16/FOXO function. As C. elegans age, the timing, dur-
ation, and frequency of EIQ bouts change, consistent with
diminished healthspan.
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