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Abstract

Background: The pathologic diagnosis and Gleason grading of prostate cancer are time-
consuming, error-prone, and subject to interobserver variability. Machine learning offers
opportunities to improve the diagnosis, risk stratification, and prognostication of
prostate cancer.
Objective: To develop a state-of-the-art deep learning algorithm for the histopathologic
diagnosis and Gleason grading of prostate biopsy specimens.
Design, setting, and participants: A total of 85 prostate core biopsy specimens from
25 patients were digitized at 20! magnification and annotated for Gleason 3, 4, and
5 prostate adenocarcinomabya urologic pathologist. From these virtual slides, we sampled
14 803 image patches of 256 ! 256 pixels, approximately balanced for malignancy.
Outcome measurements and statistical analysis: We trained and tested a deep residual
convolutional neural network to classify each patch at two levels: (1) coarse (benign vs
malignant) and (2) fine (benign vs Gleason 3 vs 4 vs 5). Model performance was
evaluated using fivefold cross-validation. Randomization tests were used for hypothesis
testing of model performance versus chance.
Results and limitations: The model demonstrated 91.5% accuracy (p < 0.001) at coarse-
level classification of image patches as benign versus malignant (0.93 sensitivity,
0.90 specificity, and 0.95 average precision). The model demonstrated 85.4% accuracy
(p < 0.001) at fine-level classification of image patches as benign versus Gleason 3 versus
Gleason 4 versus Gleason 5 (0.83 sensitivity, 0.94 specificity, and 0.83 average precision),
with the greatest number of confusions in distinguishing between Gleason 3 and 4, and
between Gleason 4 and 5. Limitations include the small sample size and the need for
external validation.
Conclusions: In this study, a deep learning-based computer vision algorithm demon-
strated excellent performance for the histopathologic diagnosis and Gleason grading of
prostate cancer.
Patient summary: We developed a deep learning algorithm that demonstrated excel-
lent performance for the diagnosis and grading of prostate cancer.
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1. Introduction

Accurate pathologic diagnosis and Gleason grading of pros-
tate cancer are essential for risk stratification and appropriate
management [1,2] but these tasks are time-consuming and
subject to substantial interobserver variability [3,4]. Machine
learning offers opportunities to improve the diagnosis, risk
stratification, and prognostication of prostate cancer through
enhanced classification and prediction in a variety of clinical
applications [5]. Recent advances in deep learning methods,
fueled by increased computing power and the availability of
large data sets, have facilitated remarkable progress in the
field of computer vision [6,7]. For instance, in the CAMEL-
YON16 challenge, some deep learning algorithms demon-
strated better performance than human pathologists at
detecting breast cancer metastases in whole-slide images
of lymph nodes [8].

Although deep learning algorithms have the potential to
improve the diagnosis, Gleason grading, and prognostication
of prostate cancer, attempts to do so have been limited [9–
14]. Moreover, to the best of our knowledge, only one study
used prostate core biopsy specimens for training [9]. Given
that initial diagnosis and treatment selection are based on
core biopsy pathology [15], a deep learning algorithm to
improve diagnosis and Gleason grading specifically in core
biopsy specimens would have profound clinical applications.
We therefore conducted a pilot study to develop a deep
learning algorithm for the histopathologic diagnosis and
Gleason grading of prostate core biopsy specimens.

2. Patients and methods

2.1. Study cohort

After obtaining institutional review board approval, we identified
25 patients from the Miriam Hospital institutional pathology database
who underwent "12-core transrectal ultrasound-guided prostate biopsy
from January 2011 to November 2012 with a diagnosis of prostate cancer.

2.2. Slide digitization and annotation

A total of 85 prostate core biopsy slides were digitized at 20! magnifi-
cation using an Aperio ScanScope CS scanner (Leica Biosystems, Nus-
sloch, Germany). Each slide was re-reviewed by a fellowship-trained
urologic pathologist, who then annotated the slides using Aperio Image-
Scope v.12.3 software (Leica Biosystems) for regions of Gleason 3, Glea-
son 4, and Gleason 5 prostate adenocarcinoma to create pixel-level
annotations (Supplementary Fig. 1). Benign patches were sampled from
non-cancer-containing regions on the same slides from which cancer-
containing patches were sampled to avoid model overfitting on artifac-
tual differences between digitized slides.

2.3. Development and evaluation of the deep learning

algorithm

From the 85 virtual slides, we sampled 14 803 image patches of
256 ! 256 pixels in size. A patch was considered to contain prostate
adenocarcinoma if >60% of the pixels were annotated as such. We then
trained an 18-layer-deep residual convolutional neural network (CNN;
ResNet) [16] to classify each patch at two levels: (1) coarse classification

as benign versus malignant; and (2) fine classification as benign versus
Gleason 3 versus Gleason 4 versus Gleason 5. The sample was separated
into five training and test sets, with training sets consisting of 80% of the
slides (split by unique patients). Models were trained to minimize cross
entropy between predicted class probabilities and ground truth labels, and
we report performance on predictions from concatenated validation sets.

Model performance was evaluated using fivefold cross-validation
over unique patients and is reported as accuracy, sensitivity, specificity,
and average precision (weighted area under the precision-recall curve)
[17]. Randomization tests were used for hypothesis testing of the model
performance against chance [18]. This involved generating a null distri-
bution of the model performance by recalculating model accuracy after
shuffling the associations between its predictions and image patch
labels. Null distributions consisted of 10 000 such simulations, and p
values were calculated as the proportion of simulations that exceeded
the true model accuracy.

Models were trained and evaluated using Tensorflow v.1.5 (www.
tensorflow.org).

3. Results

Pathologic characteristics for the 85 annotated slides and
14 803 patches of 256 ! 256 pixels are presented in
Table 1. The CNN was separately trained for patch-based
classification as (1) benign versus malignant (coarse classi-
fication) and (2) benign versus Gleason 3 versus Gleason
4 versus Gleason 5 (fine classification).

The model demonstrated 91.5% accuracy for coarse clas-
sification of image patches as benign versus malignant
(p < 0.001). This corresponded to sensitivity of 0.93, speci-
ficity of 0.90, and average precision of 0.95 (Fig. 1). The AUC
was 0.83.

The model demonstrated 85.4% accuracy for fine classi-
fication of image patches as benign versus Gleason 3 versus
Gleason 4 versus Gleason 5 (p < 0.001). This corresponded
to sensitivity of 0.83, specificity of 0.94, and average preci-
sion of 0.83 (Fig. 2), with the greatest number of confusions
in distinguishing between Gleason 3 and 4, and between
Gleason 4 and 5.

Table 1 – Baseline characteristics for the study cohort of
25 patients

Feature n (%)

Total patients 25 (100)
Total cores/slides 85 (100)
Slide pathologya

Benign 85 (100)
Any Gleason 85 (100)
Contains Gleason 3b 57 (67)
Contains Gleason 4b 24 (28)
Contains Gleason 5b 25 (29)

Patch pathology 14 803
Benign 6504
Gleason 3 4295
Gleason 4 2784
Gleason 5 1220

a Benign patches were sampled from cancer-containing slides outside of
annotated cancer regions to avoid model overfitting on artifactual
differences between digitized slides.
b Gleason score slide totals exceed the total number of slides with prostate
adenocarcinoma because a given slide may contain multiple regions with
different Gleason scores.
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4. Discussion

The deep learning algorithm developed in this pilot study
demonstrated remarkably high accuracy in both coarse
(benign vs malignant) and fine (benign vs Gleason 3 vs
Gleason 4 vs Gleason 5) classification tasks. Although there
was some misclassification of Gleason patterns 3, 4, and 5,
as seen in the confusion matrix in Fig. 2, these rates were
well within the rate of interobserver variability among
human pathologists of 15–30% [3,4]. Moreover, we observed
high performance for a relatively small sample size (relative
to the size of machine learning data sets).

Few groups have attempted to develop deep learning
algorithms for the diagnosis and/or Gleason grading of

prostate cancer, almost all using prostatectomy specimens,
with modest performance reported [9–14]. Two groups
used tissue microarrays derived from radical prostatectomy
specimens to develop patch-based deep learning algo-
rithms for prostate cancer diagnosis and Gleason grading
[11,13]. Nir et al. [13] reported accuracy of 92% for classifi-
cation of benign versus malignant and 78% for classification
of benign versus low-grade versus high-grade (Gleason 4–5)
cancer. Arvaniti et al. [11] reported precision (ie, correct
prediction with at least one of two pathologist labels) of 58%
for benign patches, 75% for Gleason 3, 86% for Gleason 4, and
58% for Gleason 5. Zhou and colleagues [12] used 380 pros-
tatectomy whole-slide images from The Cancer Genome
Atlas (TCGA) to differentiate Gleason 3 + 4 from 4 + 3 with
accuracy of 75%. Using one of the largest prostatectomy-
based data sets comprising 1226 annotated slides from
TCGA, single-institution samples, and an independent med-
ical laboratory, Nagpal and colleagues [14] trained a deep
learning algorithm that had a mean accuracy of 70% com-
pared with 61% among 29 general pathologists.

Importantly, to the best of our knowledge, only one other
group has trained a deep learning algorithm specifically
using prostate core biopsy specimens. Campanella and
coauthors [9] used 12 160 whole-slide images from prostate
core biopsies to train a semi-supervised deep learning
algorithm that had an AUC of 0.98. Their impressive results
appear to stand out when compared to the performance of
the prostatectomy-based studies discussed above [11–14].

Interestingly, Bartels and colleagues [19–21] reported on
the developmentof a machine vision system for the diagnosis
of prostate cancer and identification of cribriform pattern
more than 20 years ago. Although in many respects the work
was ahead of its time, there are important distinctions com-
pared to contemporary methods in computer vision.

Fig. 1 – Patch-based classification as benign versus malignant (coarse
classification).

Fig. 2 – Patch-based classification as benign versus Gleason 3 versus Gleason 4 versus Gleason 5 (fine classification).
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Specifically, contemporary deep learning approaches are a
form of “representation learning” that is entirely data driven
rather than relying on individual features engineered by
humans, as was common in earlier computer vision
approaches [6]. The models are therefore not biased towards
selection of particular features and may identify novel fea-
tures that result in both better performance and application
to a diverse array of image classification problems.

The distinction between deep learning algorithms based
on prostatectomy specimens and those based on core
biopsy is a clinically salient one for many reasons. Specifi-
cally, the initial diagnosis, risk stratification, and treatment
decisions for men with prostate cancer are based on core
biopsy pathology [15]. Accordingly, the performance of
algorithms developed for prostatectomy specimens may
not directly transfer to core biopsy specimens given the
markedly smaller tissue specimen and potential for oblique
core sampling to alter histologic architecture.

There are other potential applications of a deep learning
algorithm that improves the diagnosis and Gleason grading of
prostate core biopsy given its central role in the evaluation
and management of prostate cancer. For instance, such an
algorithm might expand access to expert pathologic diagno-
sis not only across the USA but globally to regions where
access to high-quality health care may be limited [22]. In
settings with established pathologic expertise, such a system
could be used to minimize human error as part of quality
assurance/improvement efforts. Moreover, deep learning
algorithms have the potential not only to recapitulate patho-
logic diagnosis and contemporary Gleason grading systems
but also to discover novel morphological features that are
relevant to cancer prediction and prognostication, thereby
improving performance.

One important consideration for application of such a
deep learning model at other centers relates to image
preprocessing. The image patches in this study required
preprocessing (ie, to have zero mean unit variance) and use
of the model in other centers would require fine-tuning to
account for potential differences in such parameters given
potential differences in tissue preparations, microscopes
used, etc. However, with such adjustments it should be
possible, in principle, to analyze any digitized prostate
biopsy specimen with the model developed here.

This pilot study has a number of limitations. Foremost, it
represents results from a small, single-institution cohort;
thus, the algorithm will improve with additional training
data and it requires external validation. In addition, the
algorithm produces patch-based predictions, although
extension to a core-based system would not require sub-
stantial technical modifications. Furthermore, the deep
learning model was not trained to differentiate specific
morphological subtypes of Gleason pattern 4, which may
have biological implications. Finally, although each slide
was re-reviewed by a urologic pathologist, the study would
benefit from multiple experts to generate consensus-based
ground truth labels. Despite these limitations, the pilot
study provides compelling data supporting the feasibility
and utility of a deep learning algorithm for the diagnosis
and Gleason grading of prostate core biopsy specimens.

Additional studies are currently ongoing to extend these
results and examine other clinically relevant outcomes.

5. Conclusions

In this pilot study, a deep learning-based computer vision
algorithm demonstrated excellent accuracy for histopatho-
logic diagnosis and Gleason grading of prostate cancer.
These results are encouraging for future clinical application
of automated histopathologic diagnosis with deep learning.
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